necromant2005 / bigml-php-sdk
BigML php SDK
Installs: 18 332
Dependents: 0
Suggesters: 0
Security: 0
Stars: 4
Watchers: 3
Forks: 2
Open Issues: 1
Requires
- php: >=5.3.0
- zendframework/zend-http: 2.*
README
Introduction
BigML PHP SDK for bigml.com api access
Features / Goals
- Simple API access from php
- Cover data transfromation json => array , array=>json and error handling
- Implemntation resources: source, dataset, model, prediction, evaluation
Installation
Main Setup
With composer
- Add this to your composer.json:
"require": { "necromant2005/bigml-php-sdk": "1.*", }
- Now tell composer to download BigMl PHP SDK by running the command:
$ php composer.phar update
Usage
Creating source resource with API version "andromeda"
use BigMl\Client\BigMl; $source = BigMl::factory('source', array( 'username' => 'alfred', 'api_key' => '79138a622755a2383660347f895444b1eb927730', ));
Creating source resource in develoment mode with specific api version
use BigMl\Client\BigMl; $source = BigMl::factory('source', array( 'username' => 'alfred', 'api_key' => '79138a622755a2383660347f895444b1eb927730', 'access_point' => 'https://bigml.io/dev/', 'version' => 'andromeda', ));
Using custom prediction Access Point for dedidated BigML AWS prediction instance
use BigMl\Client\BigMl; $source = BigMl::factory('source', array( 'username' => 'alfred', 'api_key' => '79138a622755a2383660347f895444b1eb927730', 'access_point' => 'https://bigml.io/dev/', 'access_point_prediction' => 'https://prediction.dev.bigml.io/', 'version' => 'andromeda', ));
Usage Basic
Creating resource through factory
use BigMl\Client\BigMl; BigMl::factory('source', array( ... )); // source BigMl::factory('dataset', array( ... )); // dataset BigMl::factory('model', array( ... )); // model BigMl::factory('prediction', array( ... )); // prediction BigMl::factory('evaluation', array( ... )); // evaluation
Usage Source
Create source data
use BigMl\Client\BigMl; $source = BigMl::factory('source', array( ... )); $source->create(array('data' => array( 'a', 'b', 'c', 1, 2, 3, 4, 5, 7 )));
Create source remote
use BigMl\Client\BigMl; $source = BigMl::factory('source', array( ... )); $source->create(array('remote' => 's3://bigml-public/csv/iris.csv'));
Get info about source
use BigMl\Client\BigMl; $source = BigMl::factory('source', array( ... )); $source->retrieve('source/4f510d2003ce895676000069');
Get info with waiting til the process is finished and checking status every 10 seconds
use BigMl\Client\BigMl; $source = BigMl::factory('source', array( ... )); $source->wait('source/4f510d2003ce895676000069', 10);
Find source with name 'iris'
use BigMl\Client\BigMl; $source = BigMl::factory('source', array( ... )); $source->retrieve('source', array( 'name' => 'iris' ));
Rename source
use BigMl\Client\BigMl; $source = BigMl::factory('source', array( ... )); $source->update('source/4f510d2003ce895676000069', array( 'name' => 'iris-new' ));
Remove sorce
use BigMl\Client\BigMl; $source = BigMl::factory('source', array( ... )); $source->delete('source/4f510d2003ce895676000069');
Usage Prediction
Make prediction
use BigMl\Client\BigMl; $service = BigMl::factory('prediction', array( ... )); $service->create(array( 'model' => 'model/57510d2003ce895676000069', 'input_data' => array( '000000' => 'value1', '000001' => 'valu2', ), 'name' => 'my-prediction', ));