paragonie/ristretto

Type-safe API for the Ristretto255 group

v0.1.0 2022-06-10 05:51 UTC

This package is auto-updated.

Last update: 2024-12-10 11:40:51 UTC


README

Build Status Latest Stable Version Latest Unstable Version License Downloads

Implements a type-safe API for working with the Ristretto Group in PHP projects.

Requirements

  • PHP 8.1 or newer

Installing

composer require paragonie/ristretto

Documentation

There are two basic types: ScalarValue and GroupElement.

The ScalarValue object wraps a big integer between 0 and the order of the Ristretto Group, L.

The GroupElement object wraps a group element of the Ristretto Group.

If an analogy helps, in the world of Ed25519 and X25519, the ScalarValue is your secret key, and GroupElement is your public key.

For that reason, there are also a SecretKey and PublicKey class, which contains some basic helper methods for ease-of-use.

Usage

You can convert from scalars to group elements with multBase(), and then use scalarPointMultiply() to perform a commutative group action (e.g. Diffie-Hellman).

<?php
use ParagonIE\Ristretto\{GroupElement, ScalarValue};

$aliceSecret = ScalarValue::random();
$alicePublic = $aliceSecret->multBase();
$bobSecret = ScalarValue::random();
$bobPublic = $bobSecret->multBase();

// You can perform a similar commutative group action
$aliceToBob = $aliceSecret->scalarPointMultiply($bobPublic);
$bobToAlice = $bobSecret->scalarPointMultiply($alicePublic);
var_dump($aliceToBob->equals($bobToAlice)); // bool(true)

Otherwise, most operations are within a given type (GroupElement to GroupElement, ScalarValue to ScalarValue).

GroupElement

<?php
use ParagonIE\Ristretto\{GroupElement};

$x = GroupElement::random();
$y = GroupElement::random();

$z = $x->add($y);
$w = $z->sub($y);
var_dump($w->equals($x)); // bool(true)

ScalarValue

Example

This is a PHP implementation of the libsodium example protocol.

Perform a secure two-party computation of f(x) = p(x)^k. x is the input sent to the second party by the first party after blinding it using a random invertible scalar r, and k is a secret key only known by the second party. p(x) is a hash-to-group function.

<?php
use ParagonIE\Ristretto\{GroupElement};

// -------- First party -------- Send blinded p(x)
$x = random_bytes(64);

// Compute px = p(x), a group element derived from x
$px = GroupElement::fromHash($x);

// Compute a = p(x) * g^r
$r = ScalarValue::random();
$gr = $r->multBase();
$a = $px->add($gr);

// -------- Second party -------- Send g^k and a^k
$k = ScalarValue::random();

// Compute v = g^k
$v = $k->multBase();

// Compute b = a^k
$b = $k->scalarPointMultiply($a);

// -------- First party -------- Unblind f(x)
// Compute vir = v^(-r)
$ir = $r->negate();
$vir = $v->scalarPointMultiply($ir);

// Compute f(x) = b * v^(-r) = (p(x) * g^r)^k * (g^k)^(-r)
//              = (p(x) * g)^k * g^(-k) = p(x)^k
$fx = $b->add($vir);

// --------- Correctness testing -----------
// If you knew both p(x) and k, you could calculate it directly.

// Directly calculate p(x)^k with both parties' secrets
$pxk = $px->scalarPointMultiply($k);
var_dump($fx->equals($pxk)); // bool(true)