mcpuishor / qdrant-laravel
A fluent package to interact with Qdrant Vector Database
Requires
- php: ^8.2|^8.3
- illuminate/support: ^10.0|^11.0|^12.0
Requires (Dev)
- orchestra/testbench: ^9.0|^10.0
- pestphp/pest: ^3.7.0
- pestphp/pest-plugin-laravel: *
- phpunit/phpunit: ^11.0
This package is auto-updated.
Last update: 2025-04-21 19:38:30 UTC
README
Introduction
This package provides an elegant, fluent interface for interacting with the Qdrant Vector Database in Laravel. Qdrant is a vector similarity search engine that makes it easy to store and search for embeddings, making it ideal for AI-powered applications.
Key features:
- Simple collection management
- Fluent search API with filtering and grouping
- Efficient point operations (insert, upsert, delete)
- Laravel Facade support
- Convenient payload handling
Installation
1. Install via Composer
composer require mcpuishor/qdrant-laravel
2. Publish the Configuration File
php artisan vendor:publish --tag=qdrant-laravel-config
This will create a config/qdrant-laravel.php
file where you can set your Qdrant connections and defaults.
3. Set Up Your .env
File
Update your .env
file with your Qdrant host details:
QDRANT_DEFAULT=main QDRANT_HOST=http://localhost:6333 QDRANT_COLLECTION=collection_name QDRANT_VECTOR_SIZE=1536 QDRANT_DEFAULT_DISTANCE_METRIC=Cosine
Configuration
The config/qdrant-laravel.php
file allows multiple connections:
return [ 'default' => env('QDRANT_DEFAULT', 'main'), 'connections' => [ 'main' => [ 'host' => env('QDRANT_HOST', 'http://localhost:6333'), 'api_key' => env('QDRANT_API_KEY', null), 'collection' => env('QDRANT_COLLECTION', 'default_collection'), 'vector_size' => env('QDRANT_VECTOR_SIZE', 128), ], ], 'default_distance_metric' => env('QDRANT_DEFAULT_DISTANCE_METRIC', 'Cosine'), ];
Schema Management (Migrations)
Creating a new collection
A collection must contain at least one vector. An optional parameter options
can contain additional
parameters described as an associative array. See the Qdrant documentation for details. The options can be specified using arrays
or DataObjects defined in the package.
The response is a boolean value, unless an exception is thrown.
use \Mcpuishor\QdrantLaravel\Facades\Schema; use \Mcpuishor\QdrantLaravel\Enums\DistanceMetric; use \Mcpuishor\QdrantLaravel\DTOs\Vector; $vector = Vector::fromArray([ 'size' => 128, 'distance' => DistanceMetric::COSINE ]); $response = Schema::create( name: "new_collection", vector: $vector, options: [] ); if ($response) { echo "Schema created successfully"; }
Creating a new collection on a different connection
You can switch the connection at runtime. The connection must be defined in the
config\qdrant-laravel.php
file.
use \Mcpuishor\QdrantLaravel\Schema; use \Mcpuishor\QdrantLaravel\Enums\DistanceMetric; use \Mcpuishor\QdrantLaravel\DTOs\Vector; $vector = Vector::fromArray([ 'size' => 128, 'distance' => DistanceMetric::COSINE ]); $response = Schema::connection('backup') ->create( name: "new_collection", vector: $vector, ); if ($response) { echo "Schema created successfully"; }
Creating a collection with multiple vectors
A collection can contain multiple vectors per point. They need to be passed on to the Schema::create
as an array containing the definitions of each vector. The vectors can have different definitions. The
optional parameters can be specified using Data Objects defined in the package.
use \Mcpuishor\QdrantLaravel\Schema; use \Mcpuishor\QdrantLaravel\QdrantTransport; use \Mcpuishor\QdrantLaravel\Enums\DistanceMetric; use \Mcpuishor\QdrantLaravel\DTOs\Vector; use \Mcpuishor\QdrantLaravel\DTOs\HnswConfig; $vector1 = Vector::fromArray([ 'size' => 128, 'distance' => DistanceMetric::COSINE //optional parameters 'on_disk' => true, ]); $vector2 = Vector::fromArray([ 'size' => 1024, 'distance' => DistanceMetric::COSINE, //optional parameters 'hsnw_config' => Hnswconfig::fromArray([ 'm' => 10, 'ef_construct' => 4, 'on_disk' => true, ]), ]); $response = Schema::create( name: "new_collection", vector: array($vector1, $vector2), ); if ($response) { echo "Schema created successfully"; }
Deleting a collection
To delete a collection, you can call the delete
method on the Schema
facade.
It returns a Mcpuishor\QdrantLaravel\DTOs\Response
object.
use \Mcpuishor\QdrantLaravel\Facades\Schema; $result = Schema::delete('collection_name'); if ($result) { echo "Collection has been successfully deleted."; }
Collection existence
To check if the collection defined in the config on the current connection exists:
use \Mcpuishor\QdrantLaravel\Facades\Schema; if ( Schema::exists() ) { echo "Collection exists."; }
At the same time, you can check the existence of a different collection on the same connection:
use \Mcpuishor\QdrantLaravel\Facades\Schema; if ( Schema::exists( 'another_collection' ) ) { echo "Collection 'another_collection' exists."; }
Updating a collection
Updating parameters on an existing collection can be done in a similar fashion to creating one. The parameters updated can be specified using arrays or Data Objects defined in the package.
If the collection has a single unnamed vector, use an empty string as a key for the vector options that must be updated.
use \Mcpuishor\QdrantLaravel\Facades\Schema; use \Mcpuishor\QdrantLaravel\DTOs\Vector; use \Mcpuishor\QdrantLaravel\DTOs\HnswConfig; Schema::update( vectors: [ "" => [ Vector::fromArray([ 'on_disk' => true, 'hnsw_config'=> HnswConfig::fromArray([ 'm' => 32, ]) ]) ] ], options: [ 'hnsw_config'=> HnswConfig::fromArray([ 'm' => 32, ]) ] );
Updating a different collection than the default one defined in the current connection, you must specify the collection name as a parameter.
use \Mcpuishor\QdrantLaravel\Facades\Schema; Schema::update( collection: 'collection_name', vectors: [...], options: [...] );
Indexing a collection
Indexes in a Qdrant collection are created on the payload for each point. For more details see the Qdrant documentation.
Creating an index
To create a payload index over a field:
use \Mcpuishor\QdrantLaravel\Facades\Client as Qdrant; use \Mcpuishor\QdrantLaravel\Enums\FieldType; $result = Qdrant::indexes() ->add('field_name', FieldType::KEYWORD);
It returns true
if the operation was successful, or false
otherwise.
You can use dot notation to create indexes over nested fields.
By default, indexes are stored in memory. If you have large indexes, and they
need to be stored on the disk, you can use the ->onDisk()
method before
creating the index. Choose carefully when to store an index on the disk,
as this will introduce some latency in your future queries.
use \Mcpuishor\QdrantLaravel\Facades\Client as Qdrant; use \Mcpuishor\QdrantLaravel\Enums\FieldType; $result = Qdrant::indexes() ->onDisk() ->add('field_name', FieldType::KEYWORD);
Parameterized integer indexes
Qdrant v1.8.0 has introduced a parameterized variant of the integer index.
To turn the parameterized index on you can call the ->parameterized()
method before creating an integer
index. This setting is used only for integer
fields
in the payload.
Values of the lookup
and range
can be toggled in the config\qdrant-laravel.php
file.
For more information on parameterized integer indexes and how they affect performance
check the Qdrant documentation
use \Mcpuishor\QdrantLaravel\Facades\Client as Qdrant; $result = Qdrant::indexes() ->parameterized() ->add('field_name', FieldType::INTEGER);
It returns true
if the operation was successful, or false
otherwise.
Full-text indexes
Qdrant supports full-text search for string payload. Full-text index allows you to filter points by the presence of a word or a phrase in the payload field.
use \Mcpuishor\QdrantLaravel\Enums\TokenizerType; use \Mcpuishor\QdrantLaravel\Facades\Client as Qdrant; $result = Qdrant::indexes() ->fulltext('text_field_name', TokenizerType::WORD);
It returns true
if the operation was successful, or false
otherwise.
Deleting an index
use \Mcpuishor\QdrantLaravel\Facades\Client as Qdrant; $result = Qdrant::indexes() ->delete('payload_field');
It returns true
if the operation was successful, or false
otherwise.
Searching
The package provides a fluent interface for searching vectors in your Qdrant collection.
Retrieving a single point by ID
To retrieve a point by ID:
use \Mcpuishor\QdrantLaravel\Facades\Client as Qdrant; $result = Qdrant::points() ->find($pointId);
The result will be returned as an object of \Mcpuishor\QdrantLaravel\DTOs\Point
type.
[TO_REVIEW] If the point is not found, a new empty Point
object will be returned.
Retrieving multiple points by IDs
use \Mcpuishor\QdrantLaravel\Facades\Client as Qdrant; $result = Qdrant::points() ->get([ 'id1', 'id2' ]);
The result will be returned as an object of \Mcpuishor\QdrantLaravel\PointsCollection
type.
This is a child class of \Illuminate\Support\Collection
.
This means that all methods of the Illuminate Collection can be used.
Nearest neighbours search
Recommendations
Discover
Batch search
Random points
Extending with Macros
The query builder and client are Macroable, allowing custom methods:
use Mcpuishor\QdrantLaravel\Client as Qdrant; QdrantClient::macro('byClimate', function ($climate) { return $this->where('climate', '=', $climate); }); $results = Qdrant::collection('plants')->byClimate('tropical')->get();
Conclusion
This package simplifies working with Qdrant in Laravel, making it easy to integrate vector search and AI-powered applications. Contributions are welcome!
License
This package is open-source and available under the MIT License.